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Abstract—This paper deals with the attraction domain esti-
mation of the stable equilibrium point of nonlinear systems.
An algebraic approach is firstly studied to consider a sufficient
domain characterized by a ball centred in the origin equilibrium
stable point and of a suitable calculated radius R0. The second
proposed approach is based on the resolution of a convex
optimization problem to maximize the radius of a sufficient
obtained domain of attraction. The third method consists on
computing a quadratic Lyapunov function which also optimizes
the volume of the estimated domain of attraction. A comparative
study is developed to illustrate the benefits of the studied methods
so as to obtain the largest domain of attraction.

Keywords−nonlinear system, asymptotic stability, domain
of attraction, Lyapunov Function, Polynomial system and LMI
optimisation

I. INTRODUCTION

The estimation of domain of attraction (DA) of equilibrium
point is one of the most important problem when considering
the nonlinear systems analysis because of the fact that in many
applications the stability properties of a nonlinear system do
not remain globally. In recent years, intensive researches have
been made treating this important problem([5],[7],[10],[11]).
Many methods have been proposed in the literature without
obtaining an exact DA of the equilibrium stable point[20].
As a consequence, the estimation of the DA is still an open
problem for the reason that is difficult and impractical to
determine the exact DA . The research has been made in order
to enlarge the DA without needs to reaching the exact one.
In this scenario, the most important methods are based on
searching some Lyapunov Functions (LF) structures able to
get a maximized DA ([19],[20]. These methods are known
as ’Lyapunov methods’([1],[9]). Unfortunately, there is no
systematic algorithm of considering suitable LF and also it’s
not evident to get an algebraic relation between the LF and
nonlinearities of the system. Recently, the majority of works
are based on the nonlinear decomposition approaches leading
generally to an application of LMI-based conditions ([6],[14]).
A part of these methods uses sum of squares (SOS) decom-
position of the Lyapunov stability criterion which are then
programmed ( [15],[16],[17],[21]). The second part of these
approaches employs a decomposition of the nonlinear system
model in order to get an LMI formulation of the Lyapunov

stability conditions. In this paper, we attempt to make a
point about these different original methods for estimating
the DA of nonlinear systems. Two of them are based on
the definition of a quadratic LF and the third is classed as
a ’nonLyapunov’ method applied particularly for polynomial
models. For instance, a computational of the quadratic LF
which maximizes the volume of the estimate of DA proposed
by Chesi [4] uses a semi convex approach based on Linear
Matrix Inequality (LMI). A double non-convex optimisation
is considered to solve the problem. Moreover, Chesi proposes
a relaxed criterion for obtaining an effective starting candidate
of the optimal quadratic Lyapunov function in the case of
odd polynomial system by considering the same class of
polynomial systems. An interesting analytic method based on
the Gronwell-Bellman Lemma allows the guaranteed DA of
nonlinear systems is developed in [3]. One of the recent meth-
ods has been studied in [13] consists on the optimization of
the quadratic Lyapunov function which enlarges the estimate
domain of attraction for the particular class of polynomial
nonlinear systems. The enlargement and the exactness of the
asymptotic stability region will be considered as the main
qualitative criterion of the comparison of the studied methods
when applied on predator-prey nonlinear system. A qualitative
comparison study is finally proposed in order to conclude
about the efficiency and the feasibility of each method.

II. DESCRIPTION OF THE STUDIED POLYNOMIAL SYSTEM

Let consider the polynomial systems described by:

Ẋ = f (X) (1)

Where f is a polynomial function of X .

f (X) =

r∑
i=1

AiX
[i] =

r∑
i=1

ÃiX̃
[i] (2)

with:
X = [x1 . . . xn]

T ∈ IRn
Ai=1,...,r ∈ IRn×n

i

(resp.Ãi=1,...,r ∈ IRn×ni) are constant
matrix.
X

[i]
i=1,...,r ∈ ni are the ith order Kronecker power of the state

X described by:

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)
Proceedings Engineering & Technology - Vol.4, pp. 89-93, 2013
Copyright - IPCO 

PC
Typewriter
89



{
X [0] = 1
X[j] = X [i−1] ⊗X = X ⊗X [i−1]; i ≥ 1

(3)

Where ⊗ design the kronecker product.

X̃
[i]
i=1,...,r ∈ ni , ni =

(
n+ i− 1
i

)
is the non-redundant

power of the vector X defined by:

X̃ [1] = X [1] = X

∀i ≥ 2 X̃ [i] =
[
xi1, x

i−1
1 x2, . . . , x

i−1
1 xn, x

i−2
1 x22

. . . , xi−21 x2x3, . . . , x
i−2
1 xn

. . . , xi−21 x2n, . . . , x
i−3
1 x32, . . . , x

i
n

]T (4)

Relation between redundant power and non-redundant
power for the state vector can be defined by:

∀i ∈ N,∃ Ti ∈ IRn
i×ni

X [i] = TiX̃
[i] (5)

A method of construction of Ti is developed in [2].

III. METHODS OF ESTIMATION OF THE ATTRACTION
DOMAIN

A. first approach

Consider the system described by the following polynomial
representation:

Ẋ =

r∑
i=1

FiX̃
[i] (6)

The stability domain of the stable equilibrium point of the
system (6), where the linear part is asymptotically stable, is
given by the following theorem [3]:

Theorem 1: Consider the system defined by (5) where
F1 is Hurwitz matrix that verifies lemma1 (appendix).
Such system is exponentially stable in B (O,R0) =
{X ∈ IRn : ‖X‖ < R0} with R0 the unique positive solution
of the following equation:

r∑
k=2

‖Fk‖ck−1Rk−10 − α

c
= 0 (7)

o

B. Second approach

Consider the system described by:

Ẋ =

r∑
i=1

ÃiX̃
[i] = A1X+

r∑
i=2

ÃiX̃
[i], X ∈ IRn (8)

Suppose that the linear part of the system (8) is asymp-
totically stable, that A1 is a Hurwitz matrix. We define the
asymptotic stability domain D with the following invariant
set:

D =
{
X ∈ IRn, V (X (t, t0, X0)) < c, V̇ (X) < 0

}
(9)

The stability domain is formed by a sphere centered at the
origin and radius R0, denoted:

D = B (O,R0) = {X0 ∈ IRn; ‖X0‖ < R0} (10)

The strategy consist on determining the largest radius R0

by using the quadratic Lyapunov function:

V (X) = XTPX (11)

where P is (n× n) positive definite matrix. Asymptotic
stability of the equilibrium of the system (8) is guaranteed
when the derivative

.

V (X) of V (X) is negative definite:
V̇ (X) = XTPẊ + ẊTPX

= XT
(
PA1 +AT1 P

)
X + 2

r∑
i=2

XTPÃiX̃
[i]

The following theorem resumes the approach of determination
of stability domain:

Theorem 2: Consider the system described by:

Ẋ =

r∑
i=2

ÃiX̃
[i], X ∈ IRn (12)

where A1 is a Hurwitz matrix. The system is asymptotically
stable in a ball B (O,R0) with R0 is the unique positive
solution of:

r∑
i=2

‖Ai (P, µ̃i+1)‖

(√
λmax (P )

λmin (P )

)i−1
Ri−10 − λmin (Q) = 0

(13)
with:
Ai (P, µ̃i+1) = 2vecT

(
PÃiT

+
i

)
+ µ̃Ti+1D

T
i+1

and

PA+ATP = −Q
o

A method of calculating µ̃i+1 and Di+1 is developed in [13].
The strategy consists on the determining of a maxima

stability radius R∗0 by maximization of the solution of (13)
based on variables P and µ̃i+1,i=2,...r

This approach consists to divide (13) by λmax (P ) as follow-
ing:

r∑
i=2

‖Ai (P, µ̃i+1)‖
λmax (P )

(√
λmax (P )

λmin (P )

)i−1
Ri−10 − λmin (Q)

λmax (P )
= 0

(14)
This equation has a unique positive solution which is

equivalent to the solution of the equation (13).

The problem is to minimize ‖Ai(P,µ̃i+1)‖
λmax(P )

(√
λmax(P )
λmin(P )

)i−1
and

maximize λmin(Q)
λmax(P ) .

λmin(Q)
λmax(P ) is maximum for Q = I which leads to determine R∗0
the unique positive solution of:

r∑
i=2

α∗iR
i−1 − 1 = 0 (15)
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where

α∗i = min
µ̃i+1

‖Ai (P ∗, µ̃i+1)‖

(√
λmax (P ∗)

λmin (P ∗)

)i−1 (16)

P ∗ is the solution of :

−I = P ∗A1 +AT1 P
∗ (17)

C. Third approach

This technique allows to compute an Optimal Quadratic
Lyapunov Function (OQLF) for polynomial systems. For this
purpose the author uses in [4] a Linear Matrix Inequalities
(LMI) approach dealing with non-convex distance problems.
The optimal estimate of the DA for fixed LF is computed
avoiding local minima via a one-parameter sequence of LMI’s
requiring a low computational burden.Otherwise, an expanded
criterion for odd polynomial systems is considered in order
to get a good starting point for the non-convex step. The
developed criterion is based on maximising the volume of
the region where time derivative of the LF is negative. We
consider the polynomial system defined as:

.

X = AX +

mf∑
i=2

fi (X) (18)

where X ∈ IRn, fi (X) is an homogeneous vectors
of degree i, the origin is supposed locally asymptotically
stable equilibrium point. The quadratic Lyapunov function
V (X,P ) = XTPX is considered, P is considered positive
defined and chosen such us the time derivative quadratic
function expressed by:

V̇ (P,X) = 2XTP

[
AX +

mf∑
i=2

fi (X)

]
(19)

is locally negative definite The set of all P verifying
precious hypothesis can be characterized as:

P =
{
P = PT ∈ IRn×n : PA+ATP = −Q,Q > 0

}
(20)

By considering the double sets induced by ν (P, c):

ν (P, c) = {X ∈ IRn;V (X,P ) ≤ c} (21)

and

D (P ) =
{
X ∈ IRn; V̇ (X,P ) ≤ 0

}
∪ {0} (22)

then ν (P, c) is concluded as an estimate of domain of
attraction of the origin once ν (P, c) ⊆ D (P ). The computa-
tion of the OQLF is resumed in solving a double non-convex
optimisation problem. the first requires the solution of a non-
convex distance problem resumed by:

{
γ (P ) = inf

X∈IRn\{0n}
XTPX

.

V (P,X) = 0
(23)

The second is computed in order to maximize the volume
of the DA and can be started by:

P ∗ = arg max
P∈P

δ (P )

δ (P ) =
√

(γ(P ))n

det(P )

(24)

δ (P ) is the volume of the set ν (P ; γ (P )) up to a scale
factor depending on the state dimension n.

IV. NUMERICAL EXAMPLE

In the sequel, we investigate the efficiency of the presented
approaches by studying a benchmark of biological process
known as predator prey system. The aim of this paragraph
is to make a framework of a comparative study allowing the
evaluation of the different approaches. Our main criteria for
performance is the size of the estimated DA.
Let us consider the following continuous-time system:{

ẋ1 = −3x1 + 4x21 − 0.5x1x2 − x31
ẋ2 = −2.1x2 + x1x2

(25)

The aforementioned system represents the predator prey
model as mentioned in [8], where the DA shape is well defined
(See [8]). It is readily to check the following assertion:
The origin (0, 0) is asymptotically stable. The point (2.1, 1.98)
as a point of interest. The point (1, 0) and the point (3, 0)
are unstable. The Local DA we are looking for is a region
around the asymptotic stable equilibrium point characterized
by the following the coordinates (2.1, 1.98). Let us consider
the following variable change:{

X1 = x1 − 2.1
X2 = x2 − 1.98

(26)

As a result we obtain the deviation model:

Ẋ = AX + Ã2X̃
[2] + Ã3X̃

[3] (27)

where:
A =

[
−3 0
0 −2.1

]
Ã2 =

[
4
0

−0.5
1

0
0

]
and

Ã3 =

[
−1
0

0
0

0
0

0
0

]
1) First approach: Based on Theorem (1),the DA can be

defined by:

Γ = {X ∈ n; ‖X‖ ≤ R0} (28)

where R0 is the unique positive solution of the equation
(6).Let us remember that as stated in the Grownwell-bellman
lemma the constants α and c are expected to satisfy the
following inequality: exp (αt) ‖exp (At)‖ ≤ c In practice α
and c are determined regarding the following conditions:
-The function y = exp (αt) ‖exp (At)‖ has to converge to a
fixed value.
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-The ratio α
c should be the greatest as possible.

Based on the numerical simulation we found the following
values :
α = 2 and c = 1
Thus the estimated DA is a circle where center the origin and
the radius is R0 = 0.44.
Figure 1 shows the DA obtained via the first approach proce-
dure.

2) Second approach: By considering the polynomial rep-
resentation (27) the second leads to conclude that the origin is
asymptotically stable for all initial states belonging to the ball
of center the origin and of radius R∗0 = 0.52. The optimized
parameters related to the implementation of this approach are
given by:

P ∗ =

[
0.16 0

0 0.25

]
µ̃3 = [0.0018; 0.0081;−0.0015; 0.0037]

T

µ̃4 = [0; 0.0031; 0.0012; 0.0012; 0.0002;−0.0019; 0.0004
;−0.006; 0.0003; 0.0026; 0.062]

T

Figure 2 shows the DA obtained by applying the second
approach procedure.

3) Third approach: We consider the polynomial predator
prey system defined by:

ẋ = Ax+ f2 (x) + f3 (x) (29)

The origin is locally asymptotically stable equilibrium point
and f2 (x) and f3 (x) represent nonlinear vectors respectively
of degree 2 and 3.
f2 (x) =

[
4x21 − 0.5x1x2 x1x2

]T
f3 (x) =

[
−x31 0

]T
We consider the quadratic function V (P,X) = XTPX ,
where P > 0 and its time-derivative:

V̇ (P,X) = 2XTP [AX + f2 (x) + f3 (x)] (30)

is locally negative definite. The computation of γ (P ) pre-
sented by (23) is performed by initializing c = 0.01. The opti-
mal quadratic Lyapunov function which minimizes the volume

of the DA (24) is initialized by choosing P =

[
0.16 0

0 0.25

]
Figure (3) shows the result obtained by the third approach for
the considered system.

Fig. 1. First approach domain of attraction of predator prey system

Fig. 2. Second approach domain of attraction of predator prey system

Fig. 3. Third approach domain of attraction of predator prey system

V. RESULTS DISCUSSION

This paragraph is dedicated to comment the studied ap-
proaches regarding the results obtained by leading a numerical
simulation. It is obvious that the largest domain is estimated
when implementing the second approach. However, the first
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approach shows the advantage of being simple and straightfor-
ward in its application. Indeed, this approach doesnt suggest
any constraints to initialize the starting parameters. The most
delicate step to exploit the second approach can be considered
as a fact of defining arbitrary vectors. Such vectors have crucial
importance in converging to an optimal solution. Equally
important, the major difficulty in applying the third approach
consists in performing a double convex optimization problem.

VI. CONCLUSION

In this work, methods for estimating DA of nonlinear
polynomial systems have been presented. The first approach
based on the Gronwell-Bellman lemma deals with a DA of
circular form around the stable equilibrium point. The second
approach yields a simple and sufficient DA for nonlinear
continuous systems.The radius of stability determined by this
approach has been maximized by solving a convex optimisa-
tion problem. A computation of the volume of the estimate DA
has been studied in the third part of this paper in order to solve
a double non-convex optimization problem based on LMI. To
show the efficiency of the studied methods, a numerical study
has been considered on the nonlinear polynomial predator prey
system. To sum up, the second approach may lead to better and
more efficient results if a good choice of estimated parameters
is made.

APPENDIX

Lemma 1: Consider the nonlinear system defined by:

Ẋ = F1X + g (t,X) , X ∈ IRn (31)

Suppose that the linear part of the system (31) is asymptoti-
cally stable, that F1 is Hurwitz and the nonlinear part g (X, t)
verifies the following inequality:

‖g (t,X)‖ ≤ b ‖X‖ , b ∈∗+ (32)

Let Φ (t, t0) the transition matrix of the linear part :

Φ (t, t0) = exp (F1 (t− t0)) (33)

Let c and α two positive real numbers satisfying:

Φ (t, t0) ≤ c exp (−α (t− t0))∀t ≥ t0 (34)

The solution X (t) of (31) verifies the following inequality:

‖X (t)‖ ≤ c ‖X (t0)‖ exp ((cb− α) (t− t0)) (35)

Then if b < α
c ,the system (31) is exponentially stable.
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